Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.095
1.
Life Sci Alliance ; 7(5)2024 May.
Article En | MEDLINE | ID: mdl-38453366

The recently discovered HAPSTR1 protein broadly oversees cellular stress responses. This function requires HUWE1, a ubiquitin ligase that paradoxically marks HAPSTR1 for degradation, but much about this pathway remains unclear. Here, leveraging multiplexed proteomics, we find that HAPSTR1 enables nuclear localization of HUWE1 with implications for nuclear protein quality control. We show that HAPSTR1 is tightly regulated and identify ubiquitin ligase TRIP12 and deubiquitinase USP7 as upstream regulators titrating HAPSTR1 stability. Finally, we generate conditional Hapstr1 knockout mice, finding that Hapstr1-null mice are perinatal lethal, adult mice depleted of Hapstr1 have reduced fitness, and primary cells explanted from Hapstr1-null animals falter in culture coincident with HUWE1 mislocalization and broadly remodeled signaling. Notably, although HAPSTR1 potently suppresses p53, we find that Hapstr1 is essential for life even in mice lacking p53. Altogether, we identify novel components and functional insights into the conserved HAPSTR1-HUWE1 pathway and demonstrate its requirement for mammalian life.


Tumor Suppressor Protein p53 , Ubiquitin-Protein Ligases , Animals , Mice , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitination/genetics , Nuclear Proteins/metabolism , Signal Transduction/genetics , Mammals/metabolism
2.
Genes (Basel) ; 15(3)2024 Feb 21.
Article En | MEDLINE | ID: mdl-38540330

E3 ubiquitin ligases play a pivotal role in ubiquitination, a crucial post-translational modification process. Anaphase-promoting complex (APC), a large cullin-RING E3 ubiquitin ligase, regulates the unidirectional progression of the cell cycle by ubiquitinating specific target proteins and triggering plant immune responses. Several E3 ubiquitin ligases have been identified owing to advancements in sequencing and annotation of the wheat genome. However, the types and functions of APC E3 ubiquitin ligases in wheat have not been reported. This study identified 14 members of the APC gene family in the wheat genome and divided them into three subgroups (CCS52B, CCS52A, and CDC20) to better understand their functions. Promoter sequence analysis revealed the presence of several cis-acting elements related to hormone and stress responses in the APC E3 ubiquitin ligases in wheat. All identified APC E3 ubiquitin ligase family members were highly expressed in the leaves, and the expression of most genes was induced by the application of methyl jasmonate (MeJA). In addition, the APC gene family in wheat may play a role in plant defense mechanisms. This study comprehensively analyzes APC genes in wheat, laying the groundwork for future research on the function of APC genes in response to viral infections and expanding our understanding of wheat immunity mechanisms.


Triticum , Ubiquitin-Protein Ligases , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Triticum/genetics , Triticum/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/genetics , Ubiquitin/genetics
3.
Adv Sci (Weinh) ; 11(16): e2306915, 2024 Apr.
Article En | MEDLINE | ID: mdl-38357830

Recent studies suggest that circular RNA (circRNA)-mediated post-translational modification of RNA-binding proteins (RBP) plays a pivotal role in metastasis of hepatocellular carcinoma (HCC). However, the specific mechanism and potential clinical therapeutic significance remain vague. This study attempts to profile the regulatory networks of circRNA and RBP using a multi-omics approach. Has_circ_0006646 (circ0006646) is an unreported circRNA in HCC and is associated with a poor prognosis. Silencing of circ0006646 significantly hinders metastasis in vivo. Mechanistically, circ0006646 prevents the interaction between nucleolin (NCL) and the E3 ligase tripartite motif-containing 21 to reduce the proteasome-mediated degradation of NCL via K48-linked polyubiquitylation. Furthermore, the change of NCL expression is proven to affect the phosphorylation levels of multiple proteins and inhibit p53 translation. Moreover, patient-derived tumor xenograft and lentivirus injection, which is conducted to simulate clinical treatment confirmed the potential therapeutic value. Overall, this study describes the integrated multi-omics landscape of circRNA-mediated NCL ubiquitination degradation in HCC metastasis and provides a novel therapeutic target.


Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Circular , Ubiquitination , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Ubiquitination/genetics , Mice , Animals , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cell Line, Tumor , Nucleolin , Neoplasm Metastasis/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Disease Models, Animal , Multiomics
4.
Biol Direct ; 19(1): 16, 2024 02 23.
Article En | MEDLINE | ID: mdl-38395908

BACKGROUND: Cholangiocarcinoma (CCA) is a biliary epithelial malignant tumor with an increasing incidence worldwide. Therefore, further understanding of the molecular mechanisms of CCA progression is required to identify new therapeutic targets. METHODS: The expression of RPL35A in CCA and para-carcinoma tissues was detected by immunohistochemical staining. IP-MS combined with Co-IP identified downstream proteins regulated by RPL35A. Western blot and Co-IP of CHX or MG-132 treated CCA cells were used to verify the regulation of HSPA8 protein by RPL35A. Cell experiments and subcutaneous tumorigenesis experiments in nude mice were performed to evaluate the effects of RPL35A and HSPA8 on the proliferation, apoptosis, cell cycle, migration of CCA cells and tumor growth in vivo. RESULTS: RPL35A was significantly upregulated in CCA tissues and cells. RPL35A knockdown inhibited the proliferation and migration of HCCC-9810 and HUCCT1 cells, induced apoptosis, and arrested the cell cycle in G1 phase. HSPA8 was a downstream protein of RPL35A and overexpressed in CCA. RPL35A knockdown impaired HSPA8 protein stability and increased HSPA8 protein ubiquitination levels. RPL35A overexpression promoted CCA cell proliferation and migration. HSPA8 knockdown inhibited CCA cell proliferation and migration, and reversed the promoting effect of RPL35A. Furthermore, RPL35A promoted tumor growth in vivo. In contrast, HSPA8 knockdown suppressed tumor growth, while was able to restore the effects of RPL35A overexpression. CONCLUSION: RPL35A was upregulated in CCA tissues and promoted the progression of CCA by mediating HSPA8 ubiquitination.


Bile Duct Neoplasms , Cholangiocarcinoma , Ribosomal Proteins , Animals , Mice , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Gene Expression Regulation, Neoplastic , Mice, Nude , Ribosomal Proteins/metabolism , Humans , HSC70 Heat-Shock Proteins/metabolism , Ubiquitination/genetics
5.
J Biol Chem ; 300(3): 105693, 2024 Mar.
Article En | MEDLINE | ID: mdl-38301893

Ubiquitination is a key regulator of protein stability and function. The multifunctional protein p27 is known to be degraded by the proteasome following K48-linked ubiquitination. However, we recently reported that when the ubiquitin-conjugating enzyme UbcH7 (UBE2L3) is overexpressed, p27 is stabilized, and cell cycle is arrested in multiple diverse cell types including eye lens, retina, HEK-293, and HELA cells. However, the ubiquitin ligase associated with this stabilization of p27 remained a mystery. Starting with an in vitro ubiquitination screen, we identified RSP5 as the yeast E3 ligase partner of UbcH7 in the ubiquitination of p27. Screening of the homologous human NEDD4 family of E3 ligases revealed that SMURF1 but not its close homolog SMURF2, stabilizes p27 in cells. We found that SMURF1 ubiquitinates p27 with K29O but not K29R or K63O ubiquitin in vitro, demonstrating a strong preference for K29 chain formation. Consistent with SMURF1/UbcH7 stabilization of p27, we also found that SMURF1, UbcH7, and p27 promote cell migration, whereas knockdown of SMURF1 or UbcH7 reduces cell migration. We further demonstrated the colocalization of SMURF1/p27 and UbcH7/p27 at the leading edge of migrating cells. In sum, these results indicate that SMURF1 and UbcH7 work together to produce K29-linked ubiquitin chains on p27, resulting in the stabilization of p27 and promoting its cell-cycle independent function of regulating cell migration.


Cyclin-Dependent Kinase Inhibitor p27 , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases , Humans , Catalysis , Cell Movement/genetics , HEK293 Cells , HeLa Cells , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/genetics , Protein Stability , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism
6.
Int J Biol Sci ; 20(1): 182-199, 2024.
Article En | MEDLINE | ID: mdl-38164179

Nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. Despite continuous improvement in treatment strategies, recurrence or persistence of cancer after radiotherapy is still inevitable, highlighting the need to identify therapeutic resistance factors and develop effective methods for NPC treatment. Herein, we found that TRAF4 is overexpressed in NPC cells and tissues. Knockdown TRAF4 significantly increased the radiosensitivity of NPC cells, possibly by inhibiting the Akt/Wee1/CDK1 axis, thereby suppressing survivin phosphorylation and promoting its degradation by FBXL7. TRAF4 is positively correlated with p-Akt and survivin in NPC tissues. High protein levels of TRAF4 were observed in acquired radioresistant NPC cells, and knockdown of TRAF4 overcomes radioresistant in vitro and the xenograft mouse model. Altogether, our study highlights the TRAF4-survivin axis as a potential therapeutic target for radiosensitization in NPC.


Carcinoma , Nasopharyngeal Neoplasms , Humans , Animals , Mice , Carcinoma/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Survivin/genetics , Survivin/metabolism , TNF Receptor-Associated Factor 4/metabolism , Signal Transduction , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/radiotherapy , Ubiquitination/genetics
7.
J Biol Chem ; 300(3): 105673, 2024 Mar.
Article En | MEDLINE | ID: mdl-38272235

The protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α) pathway plays an essential role in endoplasmic reticulum (ER) stress. When the PERK-eIF2α pathway is activated, PERK phosphorylates eIF2α (p-eIF2α) at Ser51 and quenches global protein synthesis. In this study, we verified eIF2α as a bona fide substrate of the E3 ubiquitin ligase carboxyl terminus of the HSC70-interaction protein (CHIP) both in vitro and in cells. CHIP mediated the ubiquitination and degradation of nonphosphorylated eIF2α in a chaperone-independent manner and promoted the upregulation of the cyclic AMP-dependent transcription factor under endoplasmic reticulum stress conditions. Cyclic AMP-dependent transcription factor induced the transcriptional enhancement of the tumor suppressor genes PTEN and RBM5. Although transcription was enhanced, the PTEN protein was subsequently degraded by CHIP, but the expression of the RBM5 protein was upregulated, thereby suppressing the proliferation and migration of A549 cells. Overall, our study established a new mechanism that deepened the understanding of the PERK-eIF2α pathway through the ubiquitination and degradation of eIF2α. The crosstalk between the phosphorylation and ubiquitination of eIF2α shed light on a new perspective for tumor progression.


Eukaryotic Initiation Factor-2 , Genes, Tumor Suppressor , Ubiquitin-Protein Ligases , Ubiquitination , Up-Regulation , Humans , A549 Cells , Cell Proliferation/genetics , Cyclic AMP/metabolism , Endoplasmic Reticulum Stress/genetics , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Phosphorylation , Transcription Factors/metabolism , Ubiquitination/genetics , Up-Regulation/genetics , Cell Movement/genetics , Ubiquitin-Protein Ligases/metabolism
8.
Clin Transl Med ; 13(10): e1443, 2023 10.
Article En | MEDLINE | ID: mdl-37837399

BACKGROUND: Enhanced de novo lipogenesis is essential for hepatocellular carcinoma (HCC). Abnormally high cullin-associated and neddylation-dissociated 1 (CAND1) expression is associated with poor clinical prognosis in HCC. The SKP1-Cullin-1-F-box (SCF) complex consists of the SKP1, Cullin-1 and F-box proteins (FBPs) and performs multiple functions including adipogenesis. SCF complex was modulated by CAND1, but Whether and how the CAND1 promotes HCC by regulating SCF complex and lipogenesis are unknown. METHODS: HCC samples were used to analyze the correlations between CAND1 expression and clinicopathological characteristics such as survival and prognosis. The in vitro functions of CAND1, FBXO11 and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) were measured by cell proliferation, colony formation and migration assays. The in vivo functions were tested in multiple mouse liver cancer models including patient-derived xenograft (PDX), cell line-derived xenograft and AKT/NRASV12-induced primary liver cancer models. Injections of adeno-associated virus targeting CAND1 (AAV-shCAND1) were performed to evaluate the therapeutic efficacy of targeting CAND1. RNA-Seq and lipidomic assays followed by serial biochemical experiments including mass spectrometry, immunoprecipitation and GST pull-down were performed to dissect the underlying mechanisms. RESULTS: CAND1 promoted the expression of lipid synthesis genes by disrupting SCF complex assembly and lipid accumulation. Furthermore, we identified hnRNPA2B1 as a novel F-box protein 11 (FBXO11)-binding partner. FBXO11 directly bound to hnRNPA2B1 and promoted hnRNPA2B1 ubiquitination and subsequent degradation. Our evaluations of the therapeutic efficacy of AAV-shCAND1 injections confirmed that targeting the CAND1-SCFFBXO11 -hnRNPA2B1A signalling axis was therapeutically effective. CAND1 downregulation significantly reduced the tumour burden in a primary mouse liver cancer model and a PDX model. CONCLUSIONS: Our results highlight that CAND1 is associated with poor prognosis in HCC and regulates lipid metabolic reprogramming by dissociating the SCF complex. Targeting the CAND1-SCFFBXO11 -hnRNPA2B1 axis may be a novel strategy for HCC treatment.


Carcinoma, Hepatocellular , F-Box Proteins , Liver Neoplasms , Animals , Mice , Humans , Cullin Proteins/chemistry , Cullin Proteins/genetics , Cullin Proteins/metabolism , Carcinoma, Hepatocellular/genetics , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Lipid Metabolism/genetics , Liver Neoplasms/genetics , Ubiquitination/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Lipids , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , F-Box Proteins/metabolism
9.
Clin Transl Med ; 13(10): e1457, 2023 10.
Article En | MEDLINE | ID: mdl-37877353

BACKGROUND: Insulin-like growth Factor 2 mRNA-binding protein 3 (IGF2BP3) is a highly conserved RNA-binding protein and plays a critical role in regulating posttranscriptional modifications. METHODS: Immunoprecipitation was used to examine the interaction of Parkin and IGF2BP3. Mass spectrometry was performed to identify the ubiquitination sites of IGF2BP3. RNA-immunoprecipitation was conducted to examine the target genes of IGF2BP3. Xenograft mouse model was constructed to determine the tumorigenesis of IGF2BP3. RESULTS: IGF2BP3 expression is negatively correlated with Parkin expression in human cervical cancer cells and tissues. Parkin directly interacts with IGF2BP3, and overexpression of Parkin causes the proteasomal degradation of IGF2BP3, while knockdown of PARK2 increases the protein levels of IGF2BP3. Mechanistically, in vivo and in vitro ubiquitination assays demonstrated that Parkin is able to ubiquitinate IGF2BP3. Moreover, the ubiquitination site of IGF2BP3 was identified at K213 in the first KH domain of IGF2BP3. IGF2BP3 mutation results in the loss of its oncogenic function as an m6A reader, resulting in the inactivation of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signalling pathways. In addition, IGF2BP3 mutation results in the attenuation of Parkin-mediated mitophagy, indicating its inverse role in regulating Parkin. Consequently, the tumourigenesis of cervical cancer is also inhibited by IGF2BP3 mutation. CONCLUSION: IGF2BP3 is ubiquitinated and regulated by the E3 ubiquitin ligase Parkin in human cervical cancer and ubiquitination modification plays an important role in modulating IGF2BP3 function. Thus, understanding the role of IGF2BP3 in tumourigenesis could provide new insights into cervical cancer therapy.


Phosphatidylinositol 3-Kinases , RNA-Binding Proteins , Ubiquitin-Protein Ligases , Uterine Cervical Neoplasms , Animals , Female , Humans , Mice , Carcinogenesis/genetics , Phosphatidylinositol 3-Kinases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/genetics , Uterine Cervical Neoplasms/genetics , RNA-Binding Proteins/genetics
10.
Hum Mol Genet ; 33(1): 1-11, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37694858

MeCP2 (Methyl CpG binding protein 2) is an intrinsically disordered protein that binds to methylated genome regions. The protein is a critical transcriptional regulator of the brain, and its mutations account for 95% of Rett syndrome (RTT) cases. Early studies of this neurodevelopmental disorder revealed a close connection with dysregulations of the ubiquitin system (UbS), notably as related to UBE3A, a ubiquitin ligase involved in the proteasome-mediated degradation of proteins. MeCP2 undergoes numerous post-translational modifications (PTMs), including ubiquitination and sumoylation, which, in addition to the potential functional outcomes of their monomeric forms in gene regulation and synaptic plasticity, in their polymeric organization, these modifications play a critical role in proteasomal degradation. UbS-mediated proteasomal degradation is crucial in maintaining MeCP2 homeostasis for proper function and is involved in decreasing MeCP2 in some RTT-causing mutations. However, regardless of all these connections to UbS, the molecular details involved in the signaling of MeCP2 for its targeting by the ubiquitin-proteasome system (UPS) and the functional roles of monomeric MeCP2 ubiquitination and sumoylation remain largely unexplored and are the focus of this review.


Methyl-CpG-Binding Protein 2 , Rett Syndrome , Humans , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Sumoylation/genetics , Proteasome Endopeptidase Complex/genetics , Rett Syndrome/metabolism , Ubiquitination/genetics , Ubiquitin/metabolism
11.
J Biol Chem ; 299(11): 105300, 2023 11.
Article En | MEDLINE | ID: mdl-37777157

Ubiquitin-specific proteases (USPs) are crucial for controlling cellular proteostasis and signaling pathways but how deubiquitination is selective remains poorly understood, in particular between paralogues. Here, we developed a fusion tag method by mining the Protein Data Bank and trapped USP11, a key regulator of DNA double-strand break repair, in complex with a novel engineered substrate mimetic. Together, this enabled structure determination of USP11 as a Michaelis-like complex that revealed key S1 and S1' binding site interactions with a substrate. Combined mutational, enzymatic, and binding experiments identified Met77 in linear diubiquitin as a significant residue that leads to substrate discrimination. We identified an aspartate "gatekeeper" residue in the S1' site of USP11 as a contributing feature for discriminating against linear diubiquitin. When mutated to a glycine, the corresponding residue in paralog USP15, USP11 acquired elevated activity toward linear diubiquitin in-gel shift assays, but not controls. The reverse mutation in USP15 confirmed that this position confers paralog-specific differences impacting diubiquitin cleavage rates. The results advance our understanding of the molecular basis for the higher selectivity of USP11 compared to USP15 and may aid targeted inhibitor development. Moreover, the reported carrier-based crystallization strategy may be applicable to other challenging targets.


Models, Molecular , Ubiquitin-Specific Proteases , Binding Sites , Ubiquitin-Specific Proteases/chemistry , Ubiquitin-Specific Proteases/metabolism , Humans , Ubiquitination/genetics , Protein Structure, Tertiary , Crystallography, X-Ray , Substrate Specificity/genetics
12.
Clin Immunol ; 255: 109736, 2023 10.
Article En | MEDLINE | ID: mdl-37604355

OBJECTIVE: The abnormal expansion of Tfh cells plays a key role in chronic inflammation of RA joint. We speculated that STUB1 is an important regulatory factor in promoting the differentiation of Tfh cells in RA. CONTENT AND METHODS: The proportion of Tfh cells and the level of STUB1 in Tfh cells was measured. CD4+T cells were isolated from PBMCs of RA patients, and the percentage of Tfh cells was detected after up- or down-regulating the expression of STUB1. The levels of mTORC1 pathway activator p-mTOR and p-S6K were measured by Western blot. The ubiquitination of p62 by STUB1 and its ubiquitination type as well as the activation of mTORC1 was detected in vitro, and the activation of the mTORC1 and the differentiation of Tfh cells was detected in STUB1-upregulated CD4+ T cells with overexpressed p62. RESULTS: The level of STUB1 is elevated in Tfh cells of patients. Up-regulation of STUB1 can promote the differentiation of Tfh cells. STUB1 promotes the degradation of p62 via K48-linked ubiquitination and promotes the activation of mTORC1. Overexpression of p62 can reverse the promoting effect of STUB1 on the differentiation of Tfh cells and the activation of mTORC1. CONCLUSION: STUB1 can promote the differentiation of Tfh cells in RA by mediating the activation of mTORC1 pathway through ubiquitination of p62.


Arthritis, Rheumatoid , Mechanistic Target of Rapamycin Complex 1 , Ubiquitin-Protein Ligases , Humans , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Cell Differentiation , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , T Follicular Helper Cells/metabolism , T-Lymphocytes, Helper-Inducer/physiology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/genetics
13.
Clin Transl Med ; 13(7): e1328, 2023 07.
Article En | MEDLINE | ID: mdl-37461251

BACKGROUND: MYCN amplification as a common genetic alteration that correlates with a poor prognosis for neuroblastoma (NB) patients. However, given the challenge of directly targeting MYCN, indirect strategies to modulate MYCN by interfering with its cofactors are attractive in NB treatment. Although cyclin B1 interacting protein 1 (CCNB1IP1) has been found to be upregulated in MYCN-driven mouse NB tissues, its regulation with MYCN and collaboration in driving the biological behaviour of NB remains unknown. METHODS: To evaluate the expression and clinical significance of CCNB1IP1 in NB patients, public datasets, clinical NB samples and cell lines were explored. MTT, EdU incorporation, colony and tumour sphere formation assays, and a mouse xenograft tumour model were utilized to examine the biological function of CCNB1IP1. The reciprocal manipulation of CCNB1IP1 and MYCN and the underlying mechanisms involved were investigated by gain- and loss-of-function approaches, dual-luciferase assay, chromatin immunoprecipitation (CHIP) and co-immunoprecipitation (Co-IP) experiments. RESULTS: CCNB1IP1 was upregulated in MYCN-amplified (MYCN-AM) NB cell lines and patients-derived tumour tissues, which was associated with poor prognosis. Phenotypic studies revealed that CCNB1IP1 facilitated the proliferation and tumourigenicity of NB cells in cooperation with MYCN in vitro and in vivo. Mechanistically, MYCN directly mediates the transcription of CCNB1IP1, which in turn attenuated the ubiquitination and degradation of MYCN protein, thus enhancing CCNB1IP1-MYCN cooperativity. Moreover, CCNB1IP1 competed with F box/WD-40 domain protein 7 (FBXW7) for MYCN binding and enabled MYCN-mediated tumourigenesis in a C-terminal domain-dependent manner. CONCLUSIONS: Our study revealed a previously uncharacterized mechanism of CCNB1IP1-mediated MYCN protein stability and will provide new prospects for precise treatment of MYCN-AM NB based on MYCN-CCNB1IP1 interaction.


Cell Transformation, Neoplastic , Neuroblastoma , Humans , Animals , Mice , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Cell Line , Neuroblastoma/pathology , Carcinogenesis , Ubiquitination/genetics
14.
Genes (Basel) ; 14(3)2023 03 07.
Article En | MEDLINE | ID: mdl-36980939

Tripartite motifs (TRIM) is a large family of E3 ubiquitin ligases that play an important role in ubiquitylation. TRIM proteins regulate a wide range of biological processes from cellular response to viral infection and are implicated in various pathologies, from Mendelian disease to cancer. Although the TRIM family has been identified and characterized in tetrapods, but the knowledge about common carp and other teleost species is limited. The genes and proteins in the TRIM family of common carp were analyzed for evolutionary relationships, characterization, and functional annotation. Phylogenetic analysis was used to elucidate the evolutionary relationship of TRIM protein among teleost and higher vertebrate species. The results show that the TRIM orthologs of highly distant vertebrates have conserved sequences and domain architectures. The pairwise distance was calculated among teleost species of TRIMs, and the result exhibits very few mismatches at aligned position thus, indicating that the members are not distant from each other. Furthermore, TRIM family of common carp clustered into six groups on the basis of phylogenetic analysis. Additionally, the analysis revealed conserved motifs and functional domains in the subfamily members. The difference in functional domains and motifs is attributed to the evolution of these groups from different ancestors, thus validating the accuracy of clusters in the phylogenetic tree. However, the intron-exon organization is not precisely similar, which suggests duplication of genes and complex alternative splicing. The percentage of secondary structural elements is comparable for members of the same group, but the tertiary conformation is varied and dominated by coiled-coil segments required for catalytic activity. Gene ontology analysis revealed that these proteins are mainly associated with the catalytic activity of ubiquitination, immune system, zinc ion binding, positive regulation of transcription, ligase activity, and cell cycle regulation. Moreover, the biological pathway analyses identified four KEGG and 22 Reactome pathways. The predicted pathways correspond to functional domains, and gene ontology which proposes that proteins with similar structures might perform the same functions.


Carps , Animals , Carps/genetics , Phylogeny , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/genetics , Proteins/genetics , Genomics , Tripartite Motif Proteins/genetics
15.
Nat Genet ; 55(3): 389-398, 2023 03.
Article En | MEDLINE | ID: mdl-36823319

Interacting proteins tend to have similar functions, influencing the same organismal traits. Interaction networks can be used to expand the list of candidate trait-associated genes from genome-wide association studies. Here, we performed network-based expansion of trait-associated genes for 1,002 human traits showing that this recovers known disease genes or drug targets. The similarity of network expansion scores identifies groups of traits likely to share an underlying genetic and biological process. We identified 73 pleiotropic gene modules linked to multiple traits, enriched in genes involved in processes such as protein ubiquitination and RNA processing. In contrast to gene deletion studies, pleiotropy as defined here captures specifically multicellular-related processes. We show examples of modules linked to human diseases enriched in genes with known pathogenic variants that can be used to map targets of approved drugs for repurposing. Finally, we illustrate the use of network expansion scores to study genes at inflammatory bowel disease genome-wide association study loci, and implicate inflammatory bowel disease-relevant genes with strong functional and genetic support.


Cell Biology , Cells , Disease , Genetic Association Studies , Genetic Pleiotropy , Genetic Association Studies/methods , Humans , Ubiquitination/genetics , RNA Processing, Post-Transcriptional/genetics , Cells/metabolism , Cells/pathology , Drug Repositioning/methods , Drug Repositioning/trends , Disease/genetics , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Genome-Wide Association Study , Phenotype , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology
16.
Clin Transl Med ; 13(1): e1153, 2023 01.
Article En | MEDLINE | ID: mdl-36639831

BACKGROUND: The MYC oncoprotein, also known as the master regulator of genes, is a transcription factor that regulates numerous physiological processes, including cell cycle control, apoptosis, protein synthesis and cell adhesion, among others. MYC is overexpressed in approximately 70% of human cancers. Given its pervasive role in cancer biology, MYC down-regulation has become an attractive cancer treatment strategy. METHODS: The CRISPR/Cas9 method was used to produce KO cell models. Western blot was used to analyzed the expressions of MYC and TATA-binding proteinassociated factors 10 (TAF10) in cancer cells (MCF7, A549, HepG2 cells) Cell culture studies were performed to determine the mechanisms by which small molecules (Z363119456, Z363) affects MYC and TAF10 expressions and functions. Mouse studies were carried out to investigate the impact of Z363 regulation on tumor growth. RESULTS: Z363 activate Thyroid hormone Receptor-interacting Protein 12 (TRIP12), which phosphorylates MYC at Thr58, resulting in MYC ubiquitination and degradation and thereby regulating MYC target genes. Importantly, TRIP12 also induces TAF10 degradation, which reduces MYC protein levels. TRIP12, an E3 ligase, controls MYC levels both directly and indirectly by inhibiting MYC or TAF10 activity. CONCLUSIONS: In summary,these results demonstrate the anti-cancer properties of Z363, a small molecule that is co-regulated by TAF10 and MYC.


Neoplasms , Proto-Oncogene Proteins c-myc , TATA-Binding Protein Associated Factors , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression Regulation , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism
17.
SLAS Discov ; 28(3): 73-87, 2023 04.
Article En | MEDLINE | ID: mdl-36608804

Mitochondrial dysfunction and aberrant mitochondrial homeostasis are key aspects of Parkinson's disease (PD) pathophysiology. Mutations in PINK1 and Parkin proteins lead to autosomal recessive PD, suggesting that defective mitochondrial clearance via mitophagy is key in PD etiology. Accelerating the identification and/or removal of dysfunctional mitochondria could therefore provide a disease-modifying approach to treatment. To that end, we performed a high-content phenotypic screen (HCS) of ∼125,000 small molecules to identify compounds that positively modulate mitochondrial accumulation of the PINK1-Parkin-dependent mitophagy initiation marker p-Ser65-Ub in Parkin haploinsufficiency (Parkin +/R275W) human fibroblasts. Following confirmatory counter-screening and orthogonal assays, we selected compounds of interest that enhance mitophagy-related biochemical and functional endpoints in patient-derived fibroblasts. Identification of inhibitors of the ubiquitin-specific peptidase and negative regulator of mitophagy USP30 within our hits further validated our approach. The compounds identified in this work provide a novel starting point for further investigation and optimization.


Mitophagy , Parkinson Disease , Humans , Mitophagy/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitination/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Mutation , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Thiolester Hydrolases/genetics , Thiolester Hydrolases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
18.
Acta Pharmacol Sin ; 44(5): 940-953, 2023 May.
Article En | MEDLINE | ID: mdl-36357669

Dopaminergic neuron degeneration is a hallmark of Parkinson's disease (PD). We previously reported that the inactivation of von Hippel‒Lindau (VHL) alleviated dopaminergic neuron degeneration in a C. elegans model. In this study, we investigated the specific effects of VHL loss and the underlying mechanisms in mammalian PD models. For in vivo genetic inhibition of VHL, AAV-Vhl-shRNA was injected into mouse lateral ventricles. Thirty days later, the mice received MPTP for 5 days to induce PD. Behavioral experiments were conducted on D1, D3, D7, D14 and D21 after the last injection, and the mice were sacrificed on D22. We showed that knockdown of VHL in mice significantly alleviated PD-like syndromes detected in behavioral and biochemical assays. Inhibiting VHL exerted similar protective effects in MPP+-treated differentiated SH-SY5Y cells and the MPP+-induced C. elegans PD model. We further demonstrated that VHL loss-induced protection against experimental parkinsonism was independent of hypoxia-inducible factor and identified the Dishevelled-2 (DVL-2)/ß-catenin axis as the target of VHL, which was evolutionarily conserved in both C. elegans and mammals. Inhibiting the function of VHL promoted the stability of ß-catenin by reducing the ubiquitination and degradation of DVL-2. Thus, in vivo overexpression of DVL-2, mimicking VHL inactivation, protected against PD. We designed a competing peptide, Tat-DDF-2, to inhibit the interaction between VHL and DVL-2, which exhibited pharmacological potential for protection against PD in vitro and in vivo. We propose the therapeutic potential of targeting the interaction between VHL and DVL-2, which may represent a strategy to alleviate neurodegeneration associated with PD.


Dishevelled Proteins , Parkinson Disease , Von Hippel-Lindau Tumor Suppressor Protein , Animals , Humans , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , beta Catenin/metabolism , Caenorhabditis elegans/metabolism , Disease Models, Animal , Dishevelled Proteins/drug effects , Dishevelled Proteins/metabolism , Dopamine/pharmacology , Dopaminergic Neurons/metabolism , Mammals , Mice, Inbred C57BL , Neuroblastoma/metabolism , Parkinson Disease/metabolism , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/metabolism , Ubiquitination/drug effects , Ubiquitination/genetics , Von Hippel-Lindau Tumor Suppressor Protein/antagonists & inhibitors , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
19.
Biomed Res Int ; 2022: 1525216, 2022.
Article En | MEDLINE | ID: mdl-36567903

Background: Ubiquitination is an important regulator in physiological and pathological conditions. Ubiquitin-specific protease 2 (USP2), as a member of the USP family, exhibits oncogenic effects in multiple malignancies. However, the exact role of USP2 has not been well clarified in lung cancer pathogenesis and progression. Therefore, we aimed to further investigate the regulatory roles of USP2 in lung cancer in this study. Methods: Firstly, immunoprecipitation-Mass Spectrometry (IP-MS), Co-immunoprecipitation (Co-IP), combined with immunofluorescent colocalization method, was conducted for USP2 protein interaction analysis in lung cancer cell lines. qRT-PCR, Western blot, and immunohistochemistry assays explored the USP2 expression pattern and USP2/ARID2- (AT-rich interactive domain 2-) specific shRNAs and overexpression vectors. Co-IP assays were designed to validate USP2-ARID2 protein interaction. Further functional studies including CHX chase assay, transwell assay, and wound healing assay were subsequently applied to evaluate the impact of USP2 modulation on lung cancer cells. Results: USP2 suppression was characteristic in lung cancer cell line models and lung cancer samples. USP2 and ARID2 demonstrated protein-protein interaction and overlapping localization in cancer cell models. Functional experiments suggested USP2 inhibited lung cancer cell invasion and migration by reducing ARID2 protein degradation. Subsequent ubiquitination assays indicated ARID2 protein degradation via the ubiquitination was significantly reduced by USP2 interaction. Conclusions: Our study provided novel insight that USP2 might suppress lung cancer by reducing ARID2 protein degradation via ubiquitination.


Lung Neoplasms , Proteolysis , Ubiquitination , Humans , Cell Line , Cell Line, Tumor , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitination/genetics , Ubiquitination/physiology
20.
PLoS Genet ; 18(12): e1010502, 2022 12.
Article En | MEDLINE | ID: mdl-36508464

Fungal growth and development are coordinated with specific secondary metabolism. This coordination requires 8 of 74 F-box proteins of the filamentous fungus Aspergillus nidulans. F-box proteins recognize primed substrates for ubiquitination by Skp1-Cul1-Fbx (SCF) E3 ubiquitin RING ligases and degradation by the 26S proteasome. 24 F-box proteins are found in the nuclear fraction as part of SCFs during vegetative growth. 43 F-box proteins interact with SCF proteins during growth, development or stress. 45 F-box proteins are associated with more than 700 proteins that have mainly regulatory roles. This corroborates that accurate surveillance of protein stability is prerequisite for organizing multicellular fungal development. Fbx23 combines subcellular location and protein stability control, illustrating the complexity of F-box mediated regulation during fungal development. Fbx23 interacts with epigenetic methyltransferase VipC which interacts with fungal NF-κB-like velvet domain regulator VeA that coordinates fungal development with secondary metabolism. Fbx23 prevents nuclear accumulation of methyltransferase VipC during early development. These results suggest that in addition to their role in protein degradation, F-box proteins also control subcellular accumulations of key regulatory proteins for fungal development.


Aspergillus nidulans , F-Box Proteins , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , Methyltransferases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism
...